CENTERS FOR DISEASE CONTROL


MORBIDITY AND MORTALITY WEEKLY REPORT

December 23, 1983 / Vol. 32 / No. 50 649 Alcohol-Related Deaths - United States, 1968-1978
652 Food-borne Hepatitis A - Oklahoma, Texas
659 Interstate Transmission of Measles in a Gypsy Population - Washington, Idaho, Montana, California
662 Outbreak of Diarrheal Illness
Associated with a Natural Disaster Utah


Perspectives in Disease Prevention and Health Promotion

Alcohol-Related Deaths - United States, 1968-1978

According to mortality data from the National Center for Health Statistics, from 1968 through 1978, $11,806,737$ people died in the United States. Of these deaths, 22,958 were attributed to acute alcoholism,* acute ethylism, ${ }^{\dagger}$ or unspecified alcoholism (ICD§ 8-rubric 303.9); and 3,415 were attributed to poisoning by alcohol (ICD 8-rubric E860). When the risk of death was determined (using data from the Bureau of the Census), the risk remained constant. However, during this 11 -year period, the proportion of deaths from these causes increased somewhat, especially for males.

To identify risk factors for reducing the number of deaths from these causes, acute alcoholism/ethylism deaths and alcohol poisoning deaths were further analyzed by urban or rural residence, sex, and month and week of occurrence. The proportion of deaths from both acute alcoholism/ethylism and alcohol poisoning was greatest for rural males (Table 1). Regardless of area of residence, the proportion of deaths attributed to both causes was more than twice as great for males as for females. The median age at death from acute alcoholism was 50.4 years, with the median age for women nearly equal to that (50.1). Nine of the deaths occurred among persons under the age of 10 years and 235 among persons 80 years or older. The median age at death for victims of alcohol poisoning was 48.2 years, with the median age for women slightly above that for men (50.5, compared with 47.3). Eighteen of these deaths occurred among persons under 10 years of age, and 10, among persons 80 years or older.
-A pathological dependence on alcohol.
${ }^{\dagger}$ Poisoning or intoxication by ethyl alcohol.
$\S_{\text {International Classification of Diseases, } 8 \text { th Revision. }}$
TABLE 1. Acute alcoholism/ethylism deaths and alcohol poisoning deaths, by sex and area of residence- United States, 1968-1978

|  | Male |  | Female |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. of deaths* | Rate <br> per 1,000 <br> deaths |  | No. of deaths* | Rate <br> per 1,000 <br> deaths | Rate ratio <br> male:female |
| Urban | 10,363 | 1.38 |  | 3,581 | 0.58 | 2.4 |
| Rural | 7,146 | 1.67 |  | 1,837 | 0.57 | 2.9 |

[^0]Alcohol - Continued
Seasonal data for deaths from acute alcoholism/ethylism and poisoning as a proportion of all deaths indicate that the proportion is greatest during December (Figure 1), especially among males. When deaths during the period from December 1 through January 4 were further analyzed by week, the pattern for males differed from that for females (Figure 2). For both causes of death, the greatest percentage of deaths among males within this period occurred during the week including December 25, with a decline during the week including January 1. For females, the rate rose during Christmas week and increased even more during the week following, which includes New Year's Eve and New Year's Day.
Reported by Div of Surveillance and Epidemiologic Studies, Epidemiology Program Office, CDC.
Editorial Note: The potential for rapid intake of large amounts of alcohol to cause death has been previously documented (1,2). Many of these are classified as deaths from acute alcohol intoxication, acute alcoholism, or acute ethylism. Death from alcohol poisoning has also been described $(1,3)$. At least one study indicated the vast majority of alcohol poisoning deaths was caused by ethanol alone, and the remainder, by a combination of ethanol with other forms of alcohol (3). Even poisonings caused by alcohol other than ethanol are usually due to substitution of these substances for ethanol (4) and sometimes result from adulterated beverages given to unsuspecting drinkers (1). The similarity in distribution and trends for deaths from acute alcoholism and ethylism and deaths from alcohol poisoning indicates that these deaths are part of the same health problem.

FIGURE 1. Rate of death from acute alcoholism/ethylism and alcohol poisoning, by month and sex - United States, 1968-1978


## Alcohol - Continued

Nearly all deaths from acute alcohol poisoning are accidental, and many persons are not aware that alcohol in excess is poisonous and possibly fatal (3). Death from acute alcohol intoxication is often associated with exposure to cold (1). Conversely, ethanol has been identified as a risk factor for death from hypothermia (5). From the data presented here, several additional risk factors for acute alcohol-consumption deaths can be identified. It appears that not only the cold-weather months, but especially the weeks surrounding Christmas, are highrisk periods. During these times, males in general and rural males in particular are important target populations for prevention efforts.

## References

1. Lees F . Alcohol and the nervous system. Br J Psychiat 1975; Spec. No. 9:263-71.
2. Estes NJ, Heinemann ME. Alcoholism: development, consequences, and interventions. St. Louis: The C. V. Mosby Company, 1982.
3. Fatteh A, Hayes B. Poisons that killed: an analysis of 300 cases. North Carolina Med J 1974; 35:227-9.
4. Friedman PA. Common poisons. In: Isselbacher KJ, Adams RD, Braunwald E, Petersdorf RG, Wilson JD, eds. Harrison's principles of internal medicine (ninth edition). New York: McGraw-Hill Book Co., 1980.
5. CDC. Exposure-related hypothermia deaths-District of Columbia, 1972-1982. MMWR 1982;31:669-71.

FIGURE 2. Percentage of deaths among females and males from acute alcoholism/ ethylism and alcohol poisoning, by week - United States, December 1-January 4, 1972-1978


## Epidemiologic Notes and Reports

## Food-borne Hepatitis A Oklahoma, Texas

Two unrelated outbreaks of hepatitis A, involving a total of 326 people, occurred in Oklahoma and Texas during September and October 1983. Both were associated with restaurant food.

Oklahoma: The first outbreak occurred in Marietta in Love County (county population approximately 7,800 ), where 203 persons became ill from August 15 to October 10 (Figure 3). Hepatitis A was defined as: (1) jaundice or (2) serum glutamic oxalacetic transaminase enzyme (SGOT) greater than $100 \mathrm{mlU} / \mathrm{ml}$ plus nausea, vomiting, or fever or (3) a positive serum anti-hepatitis A virus (HAV) immunoglobulin (IgM). Twelve outbreak-related cases were reported elsewhere - 10 in Texas and two in California. Patients ranged in age from 2 to 66 years (median 22 years); $52 \%$ were male.

Of 175 patients interviewed about exposures, 161 ( $92 \%$ ) had eaten at a drive-in restaurant 2-6 weeks before onset of illness. Twenty-nine patients were employed as foodhandlers at eight other restaurants in town. Two worked on icing and cream-filling machines at a local bakery that distributed cookies nationwide.

The index patient, a 22-year-old foodhandler at the drive-in restaurant, developed jaundice on August 19. Investigation into his personal hygiene suggested that his handwashing practices were good, although he developed diarrhea on August 15 and continued to work up to the onset of his jaundice.

To identify risk factors of the outbreak, a survey was conducted of local high-school students. Twenty-two ( $13 \%$ ) of 169 students who completed questionnaires had hepatitis A. The only exposure associated with illness was eating at the same drive-in restaurant during August. Twenty-one (19\%) of 110 students who had eaten there became ill, compared with one ( $2 \%$ ) of 59 who had not eaten at the restaurant ( $p<0.01$ ). Attack rates increased with the number of meals eaten. No single food or drink could be implicated as a vehicle for transmission.

Most of the town's foodhandlers either had been exposed at the drive-in restaurant or were coworkers of infected foodhandlers; therefore, on September 16, the Oklahoma State Health Department recommended that immune globulin (IG) be given to patrons of five restaurants in Marietta where ill foodhandlers had prepared uncooked foods and to all foodhandlers

FIGURE 3. Hepatitis A cases, by date of onset - Marietta, Oklahoma, August 15October 10, 1983


ONSET

## Hepatitis A - Continued

who worked in the town. A total of 5,500 doses were given. The drive-in restaurant voluntarily closed for a month; in addition, following a U.S. Food and Drug Administration investigation, the bakery, at which two hepatitis A patients worked, voluntarily recalled selected products. No additional cases have been reported.

Texas: The second outbreak occurred in Lubbock, a city of 180,000 people. From October 5, through October 28, 1983, 123 physician-diagnosed cases of hepatitis A were reported to the Lubbock City Health Department. One hundred of these patients had eaten at a salad bar-type restaurant in the city 14-60 days before illness (Figure 4). Eight of the patients, including three cooks, were employed at the restaurant. Patients with restaurant-associated hepatitis A ranged in age from 7 to 64 years (mean 31 years); 65\% were male; and $92 \%$ became jaundiced.

A case-control study was performed using 50 patients and 59 controls who had eaten at the restaurant only once between August 24 and September 17; controls had eaten with the patients and had sera negative for anti-HAV. Eating lettuce, tomatoes, or pickles on sandwiches was strongly associated with illness ( $p<0.001$ ); eating these vegetables at the salad bar, which was prepared by different foodhandlers, was not.

Eighty-seven of the restaurant's 96 employees, including all the cooks, completed questionnaires and underwent screening for anti-HAV immunoglobulin $G$ ( $\operatorname{lgG}$ ) and $\operatorname{lgM}$. One sandwich-maker experienced nausea and vomiting in mid-September but was never jaundiced. Two of his household members contracted hepatitis A during the outbreak, despite never having eaten at the restaurant, and only he made the implicated sandwiches during periods when patients were known to have been exposed. An anti-HAV IgM drawn on November 2 was negative; however, an anti-HAV IgG was positive.

On October 8, the Lubbock City Health Department advised that the following persons receive immune globulin (IG) as prophylaxis against hepatitis $A$ : (1) all employees of the

FIGURE 4. Single-exposure hepatitis A cases, by exposure and onset - Lubbock, Texas, August 24-October 11, 1983


## Hepatitis A - Continued

restaurant, (2) anyone who had eaten at the restaurant during the previous 2 weeks, and (3) all household contacts of persons with hepatitis A. Patrons were included because of the possibility of continuing food contamination by frequent sewage backups in the restaurant's kitchen. During October 1983, an estimated 15,000-20,000 doses of IG were given in the Lubbock area, mostly by private physicians.

Reported by M Gaither, JP Lofgren, MD, State Epidemiologist, Arkansas State Dept of Health; G Empey, Kern County Health Dept, AF Taylor, MPH, TG Stephenson, MPH, GA Pettersen, MD, San Bernadino Dept of Public Health, J Chin, MD, State Epidemiologist, California Dept of Health Svcs; B Baylor, MD, G Gwin, P Hunt, JT O'Connor, DO, V Smith, DO, Love County Health Center, W Baber, S Butler, R Campbell, M Claborn, P Claborn, L Douglas, MT, LL Jones, Y McGinnis, B Smith, Love County Health Dept, S Makintubee, J Mallonee, MPH, G Istre, MD, Acting State Epidemiologist, Oklahoma State Dept of Health; $A B$ Way, MD, Lubbock City Health Dept, C Reed, MPH, L Sehu'ster, PhD, TL Gustafson, MD, CE Alexander, MD, Acting State Epidemiologist, Texas Dept of Health; Hepatitis Br, Div of Viral Diseases, Center for Infectious Diseases, Div of Field Svcs, Epidemiology Program Office, CDC.
Editorial Note: Hepatitis A outbreaks remain a highly visible health problem in the United States, although only a small proportion of hepatitis cases are traceable to such outbreaks. In
(Continued on page 659)

TABLE I. Summary-cases specified notifiable diseases, United States

| Disease | 50th Week Ending |  |  | Cumulative, 50th Week Ending |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { December } 17, \\ 1983 \\ \hline \end{gathered}$ | $\begin{gathered} \text { December } 18 . \\ 1982 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Median } \\ 1978-1982 \end{gathered}$ | $\begin{gathered} \text { December } 17 . \\ 1983 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { December } 18 \\ 1982 \\ \hline \end{array}$ | $\begin{gathered} \text { Median } \\ 1978-1982 \end{gathered}$ |
| Aseptic meningitis | 194 | 170 | 157 | 11,500 | 9,340 | 8,220 |
| Encephalitis: Primary (arthropod-borne \& unspec.) Post-infectious | 16 | 32 3 | 19 | 1.663 69 | 1.540 79 | 1.160 210 |
| Gonorrhea: Civilian | 18,488 | 21,496 | 21,496 | 863,188 | 922,639 | 967,245 |
| Military | 413 | 358 | 601 | 23,024 | 24,981 | 25,893 |
| Hepatitis: Type A | 365 | 460 | 604 | 20,989 | 22,206 | 27,302 |
| Type B | 471 | 463 | 453 | 22.015 | 21,170 | 17,667 |
| Non A, Non B | 53 | 55 | N | 3.237 | 2,405 | N |
| Unspecified | 132 | 164 | 206 | 7.363 | 8,342 | 10,089 |
| Legionellosis | 16 | 15 | N | 689 | 630 | N |
| Leprosy | 7 | 25 | 3 | 229 | 227 | 210 |
| Malaria | 9 | 9 | 16 | 756 | 1.011 | 1.011 |
| Measles : Total* | 6 | 19 | 42 | 1.428 | 1,641 | 13,315 |
| Indigenous <br> Imported | 5 1 | N N | N N | 1.129 299 | N N | N N |
| Meningococcal infections: Total | 39 | $N$ 58 | 47 | 2,624 | 2,900 | 2,587 |
| Civilian | 39 | 58 | 47 | 2,609 | 2,886 | 2,568 |
| Military | 127 | - | 157 | 15 3.175 | 5.14 | 19 |
| Mumps | 127 | 69 | 157 | 3.175 | 5,146 | 8,225 |
| Pertussis | 39 | 40 | 34 | 2,179 | 1,703 | 1,610 |
| Rubella (German measles) | 7 | 25 | 57 | 935 | 2,255 | 3.749 |
| Syphilis (Primary \& Secondary): Civilian | 610 | 796 | 595 | 30,946 | 31.798 | 26,349 |
| Military | 8 | 10 | 7 | 370 | 424 | 311 |
| Toxic-shock syndrome | 9 | N | N | 377 | N | N |
| Tuberculosis | 605 | 574 | 616 | 22,739 | 24.612 | 26,238 |
| Tularemia | 4 | 6 | 9 | 303 | 250 | 223 |
| Typhoid fever | 8 | 10 | 10 | 433 | 385 | 506 |
| Typhus fever, tick-borne (RMSF) | 3 | 2 | 7 | 1.129 | 956 | 1.038 |
| Rabies, animal | 42 | 60 | 61 | 5,634 | 5,990 | 5,990 |

TABLE II. Notifiable diseases of low frequency, United States

|  | Cum. 1983 |  | Cum. 1983 |
| :---: | :---: | :---: | :---: |
| Anthrax | - | Plague | 39 |
| Botulism: Foodborne | 19 | Poliomyelitis: Total | 8 |
| Infant (Calif. 1) | 61 | Paralytic (Pa. 1) | 8 |
| Other | 3 | Psittacosis (Fla. 1) | 118 |
| Brucellosis (Va.2, Ky. 1) | 179 | Rabies, human | 2 |
| Cholera | 1 | Tetanus (Tex. 1) | 73 |
| Congenital rubella syndrome | 20 | Trichinosis | 32 |
| Diphtheria | 4 | Typhus fever, flea-borne (endemic, murine) (Tex. 4) | 48 |
| Leptospirosis | 45 |  |  |

[^1]TABLE III. Cases of specified notifiable diseases, United States, weeks ending December 17, 1983 and December 18, 1982 (50th week)

| Reporting Area | Aseptic Meningitis | Encephalitis |  | Gonorrhea (Civilian) |  | Hepatitis (Viral), by type |  |  |  | $\left\{\begin{array}{c} \text { Legionel- } \\ \text { losis } \end{array}\right.$ | Leprosy | Malaria |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Primary | Post-infectious |  |  | A | B | NA,NB | Unspecified |  |  |  |
|  | 1983 | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1982 \end{aligned}$ | 1983 | 1983 | 1983 | 1983 | 1983 | $\begin{aligned} & \text { Cum } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ |
| UNITED STATES | 194 | 1,663 | 69 | 863.188 | 922,639 | 365 | 471 | 53 | 132 | 16 | 229 | 756 |
| NEW ENGLAND | 11 | 61 | - | 23.237 | 22,233 | 10 | 16 | - | 23 | 2 | 3 | 38 |
| Maine |  |  | - | 1,084 | 1,174 |  |  | - |  |  |  | 1 |
| N.H. | - | 5 | - | 701 | 728 | 1 | 1 | - | - |  | 1 | 2 |
| Vt . | - | 1 | - | 425 | 408 |  | 2 | - | - | - |  | 1 |
| Mass. | 4 | 28 | - | 10,026 | 9,901 | 8 | 6 | - | 23 | 1 | - | 18 |
| R.I. |  | 1 | - | 1.245 | 1.517 | - | - | - | . |  | 1 | 4 |
| Conn. | 7 | 26 | - | 9.756 | 8,505 | 1 | 7 | - | - | 1 | 1 | 12 |
| MID ATLANTIC | 13 | 130 | 7 | 112,127 | 117,452 | 59 | 75 | 4 | 3 | 10 | 27 | 107 |
| Upstate N.Y. | 5 | 33 | - | 17,770 | 19,519 | 9 | 28 | 1 | 1 | - | - | 31 |
| N. Y. City | 4 | 13 | - | 45,252 | 48.080 | 23 | 3 | - | 1 | - | 26 | 27 |
| N.J. | - | 18 | 1 | 20.937 | 21,375 | 17 | 23 | - | - | 1 | - | 28 |
| Pa | 4 | 66 | 6 | 28,168 | 28,478 | 10 | 21 | 3 | 1 | 9 | 1 | 21 |
| E.N CENTRAL | 22 | 585 | 20 | 120,269 | 133.135 | 18 | 54 | 5 | 4 | 2 | 6 | 54 |
| Ohio | 11 | 195 | 9 | 31,972 | 35.214 | 7 | 17 | 2 | 1 | 2 | 1 | 9 |
| Ind. | 4 | 185 | 1 | 11,954 | 15,738 | 9 | 13 | 1 | 1 | . |  | 7 |
| III. |  | 17 | 7 | 31,729 | 38,454 | 1 | 2 | 2 | - | - | 2 | 18 |
| Mich. | 7 | 124 | - | 33,380 | 32,015 | 1 | 22 | - | 2 | - | 3 | 15 |
| Wis. | - | 64 | 3 | 11,234 | 11.714 | - | - | - | - | - | - | 5 |
| W N CENTRAL | 9 | 167 | 10 | 40,010 | 43,261 | 17 | 12 | 3 | 1 | - | 6 | 32 |
| Minn | 2 | 68 | 1 | 5,706 | 6,305 | - | 3 | 2 | - | - | 4 | 11 |
| lowa | 1 | 58 | . | 4,433 | 4,654 | 1 | 1 | 1 | - | - | - | 4 |
| Mo. | 6 | 30 | - | 19.160 | 20,468 | 3 | 6 | - | 1 | - | 1 | 5 |
| N Dak. | - | 4 | - | 428 | 556 | - | - | - | - | - | . | 2 |
| S Dak |  | 1 | 2 | 1,020 | 1,095 | 13 | - | - | - | - |  | 1 |
| Nebr. | - | 4 | - | 2,686 | 2,544 | . | 1 | . | - | - | - | 3 |
| Kans. | - | 2 | 7 | 6,577 | 7.639 | - | 1 | - | - | - | 1 | 6 |
| S. ATLANTIC | 41 | 229 | 16 | 225,065 | 240.290 | 39 | 102 | 10 | 11 | 1 | 13 | 121 |
| Del. | - | 1 | - | 4.130 | 4.001 | 1 | 4 | - | - | - | - | 1 |
| Md. | 4 | 23 | - | 28,870 | 30.181 | 2 | 14 | . | 2 | - | 1 | 21 |
| D. | - | - | - | 15,344 | 14,764 | - | 1 | - | - | - | - | 16 |
| Va | 9 | 56 | 2 | 20,548 | 19,335 | 4 | 10 | 2 | 1 | - | 1 | 30 |
| W Va. |  | 47 | . | 2,541 | 2,693 |  | 3 | - | 1 | - | - | 3 |
| NC | 8 | 47 | - | 34,522 | 37,811 | 2 | 10 | - | 2 | - | 2 | 4 |
| S.C | 3 | 5 | - | 20.619 | 23,385 | - | 17 | - | - | - |  | 6 |
| Ga. | 3 | 9 | 2 | 47.469 | 46,911 | 6 | 15 | 1 | - | - | 1 | 10 |
| Fla | 14 | 41 | 12 | 51,022 | 61,209 | 24 | 28 | 7 | 5 | 1 | 8 | 30 |
| E.S CENTRAL | 5 | 67 | 2 | 72,658 | 80,213 | 6 | 27 | 3 | 1 | - | - | 14 |
| Ky . | 2 | 16 | - | 8,626 | 10,710 | 1 | 2 | - | - | - | - | 2 |
| Tenn. | - | 19 | - | 29.548 | 31,333 | 1 | 13 | - | 1 | - | - |  |
| Ala | 1 | 24 | - | 22,528 | 23,972 | 2 | 7 | 3 | - | - | - | 7 |
| Miss. | 2 | 8 | 2 | 11.956 | 14.198 | 2 | 5 | - | - | - | - | 5 |
| W S CENTRAL | 53 | 168 | 2 | 121,125 | 127.025 | 60 | 35 | 3 | 58 | - | 35 | 66 |
| Ark |  | 13 | - | 9,631 | 10,323 | 1 | 3 | - | 7 | - | - | 1 |
| La | 44 | 20 | - | 23,369 | 22,920 | 11 | 8 | 2 | 6 | - | 1 | 8 |
| Okla | 1 | 30 | 1 | 13,850 | 14,066 | 6 | 8 | 1 | 1 | - |  | 10 |
| Tex. | 8 | 105 | 1 | 74.275 | 79,716 | 42 | 16 | - | 44 | - | 34 | 47 |
| MOUNTAIN | 2 | 77 | 4 | 27,639 | 30,847 | 32 | 29 | - | 6 | - | 14 | 29 |
| Mont. | - | 2 | - | 1,193 | 1,294 | - | 1 | - | - | - | - | - |
| Idaho | - | 1 | - | 1,236 | 1.479 | - | 2 | - | - | - | - | 2 |
| Wyo. | - | 2 | - | 725 | 927 | 2 | - | - | - | - | - | 1 |
| Colo. | 2 | 46 | - | 7,715 | 8,300 | 6 | 8 | - | 1 | - | 2 | 10 |
| N. Mex | . | 2 | - | 3,419 | 4.272 | 3 | 3 | - | 2 | - |  | 5 |
| Ariz. | - | 11 | 4 | 7.857 | 7.925 | 19 | 9 | - | 3 | - | 10 | 8 |
| Utah | - | 12 | - | 1,325 | 1,520 | 2 | 6 | - | . | - | 2 | 3 |
| Nev . | - | 1 | - | 4,169 | 5,130 | - | - | - | - | - | - | - |
| PACIFIC | 38 | 179 | 8 | 121,058 | 128.183 | 124 | 121 | 25 | 25 | 1 | 125 | 295 |
| Wash. | 3 | 13 | 1 | 9.292 | 11.026 | 1 | 3 | - | 1 | 1 | 16 | 16 |
| Oreg. |  |  | 4 | 6,438 | 7.594 | 28 | 10 | 5 | - | - | 1 | 12 |
| Calif. | 27 | 157 | 3 | 99,994 | 103,731 | 95 | 106 | 20 | 23 | - | 73 | 265 |
| Alaska | 2 | - | - | 3,092 | 3,308 | - | - | . | - | - | - | - |
| Hawaii | 6 | 9 | - | 2.242 | 2,524 | - | 2 | - | 1 | - | 35 | 2 |
| Guam | U | - | i | 114 | 134 | U | U | U | U | U | 2 | 2 |
| P.R. | 2 | 1 | 1 | 2,615 | 2,548 | 1 | 5 | - | 3 | - | - | 3 |
| V.I. | U | - | - | 267 | 273 | U | U | U | U | U | - | . |
| Pac. Trust Terr. | U | - | - | - | 388 | U | U | U | U | U | - | - |

TABLE III. (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending
December 17, 1983 and December 18, 1982 (50th week)

| Reporting Area | Measles (Rubeola) |  |  |  |  | Menin- <br> gococcal <br> Infections <br> Cum. <br> 1983 | Mumps |  |  | Pertussis |  |  | Rubella |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Indigenous |  | Imported* |  | Total <br> Cum, <br> 1982 |  |  |  |  |  |  |  |  |  |  |
|  | 1983 | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | 1983 | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ |  |  | 1983 | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1982 \end{aligned}$ | 1983 | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1982 \end{aligned}$ | 1983 | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1982 \end{aligned}$ |
| UNITED STATES | 5 | 1.129 | 1 | 299 | 1,641 | 2,624 | 127 | 3,175 | 5,146 | 39 | 2,179 | 1.703 |  |  |  |
| NEW ENGLAND <br> Maine <br> N.H. <br> Vt . <br> Mass. <br> R.I. <br> Conn. | - | 5 | - | 16 | 14 | 145 |  | +129 | 1 187 | 39 | 2,179 | 1,703 | 7 | 935 | 2.255 |
|  | - |  | - | - | 14 | 145 10 | 1 | 129 22 | 187 43 | 1 | 73 | 62 | - | 20 | 20 |
|  | - | - | - | 3 | 3 | 6 |  | 22 27 | 43 18 | - | 5 10 | 4 12 | - | 5 | 11 |
|  | - | 4 | - | 5 | 2 3 | 10 | $i$ | 15 | 7 | - | 8 | 12 2 | - | 5 | 11 |
|  | - | 4 | - | 5 | 3 | 46 | 1 | 28 | 75 | 1 | 38 | 28 | - | 5 8 | 2 |
|  | - | 1 | - | 8 | 6 | 11 62 | - | 16 | 18 | - | 5 | 11 | - | 8 | 2 |
| MID ATLANTIC <br> Upstate N.Y. <br> N.Y. City <br> N.J. <br> Pa . | - | 75 | - | 44 |  |  | 85 | 21 367 | 26 | - | 7 | 5 | - | 2 | 6 |
|  | - | 5 | - | 13 | 169 112 | 440 140 | 85 | 367 | 335 | 9 | 384 | 499 | - | 146 | 109 |
|  | - | 44 | - | 27 | 112 44 | 140 | 1 | 105 | 94 47 | 1 | 121 | 283 | - | 31 | 109 53 |
|  | - | 26 | - | 1 | 6 | 75 | 79 | 41 139 | 47 54 | - | 53 | 47 | - | 86 | 36 |
|  | - |  | - | 3 | 7 | 75 151 | 79 3 | 139 82 | 54 140 | 8 | 20 190 | 23 146 | - | 3 | 18 |
| E.N. CENTRAL Ohio Ind. III. Mich. Wis. | - | 649 | - |  |  |  | 20 |  | 140 | 8 | 190 | 146 | - | 26 | 2 |
|  | - | $\begin{array}{r}649 \\ \hline 2\end{array}$ | - | 58 15 | 79 | 487 | 20 | 1.396 586 | 2.611 1.742 | 6 | 478 | 351 | 1 | 134 | 207 |
|  | - | 402 | - | 4 | 2 | $\begin{array}{r}144 \\ \hline\end{array}$ | 14 | 586 | 1.742 46 | 1 | 151 | 95 | 1 | 2 | 4 |
|  | - | 173 | - | 33 | 24 | 140 | 2 | 56 156 | 46 303 | 2 | 60 156 | 25 | 1 | 27 | 29 |
|  | - | 2 | - | 5 | 52 | 147 | 4 | 156 507 | 303 391 | 3 | 156 | 162 30 | - | 56 | 79 |
|  | - | - | - | 1 | 5 | 62 | 4 | 507 91 | 391 129 | - | 42 69 | 30 39 | - | 19 30 | 50 45 |
| W.N. CENTRAL <br> Minn. <br> lowa <br> Mo. <br> N. Dak <br> S. Dak. <br> Nebr. <br> Kans. | - | - 1 | - | 7 | 49 | 140 |  |  |  |  |  |  |  |  | 45 |
|  | - | - 1 | - | 7 | 4 | 140 28 | 3 | 169 30 | 636 455 | 13 | 142 | 82 | 1 | 43 | 62 |
|  | - | - | - | - | - | 20 | 3 | 44 | 455 61 | 1 | 48 9 | 34 | - | 9 | 7 |
|  | - | - | - | 1 | 2 | 55 | 3 | 44 19 | 61 13 | - | 9 9 | 9 | - |  | 7 |
|  | - | - | - | 1 | 2 | + |  | 19 | 13 | - | 18 | 17 | - | - | 38 |
|  | - | - | . | - | - | 4 | - | 1 | 1 | - | 3 | - | - | - | B |
|  | - | - | - | - | 3 | 5 | - | 4 | 1 | - | 8 | 6 | - | - | 1 |
|  | - | - | - | 6 | 44 | 24 | - | 71 | 1 105 | 12 | 2 54 | 15 | 1 | ${ }^{-}$ | - |
|  |  |  |  |  |  | 24 | - | 71 | 105 | 12 | 54 | 15 | 1 | 34 | 16 |
| S. ATLANTIC <br> Del. <br> Md. <br> D.C. <br> Va . <br> W. Va. <br> N.C. <br> S.C. <br> Ga. <br> Fla. | - | 173 | - | 31 | 229 | 538 | 3 | 225 |  |  |  |  |  |  |  |
|  | - |  | - | 3 | 22 | 11 | 3 | 225 8 | 321 13 | 3 | 245 | 280 | - | 99 | 98 |
|  | - | 6 | - | 4 | 5 | 54 | - | 8 43 | 13 34 | - | 25 | 8 73 | - | - | 1 |
|  | - | - | - | 4 | 1 | 84 | - | 43 | 34 | - | 20 | 73 |  | 2 | 34 |
|  | - | 10 | - | 13 | 14 | 79 | - |  |  | - | - |  |  | - |  |
|  | - | - | - | 1 | + | 79 3 | 3 | 36 59 | 42 119 | - | 50 | 29 | - | 2 | 12 |
|  | - | - | - | 1 | 2 | 105 | 3 | 59 14 | 119 | 2 | 9 | 14 | - | 2 | 3 |
|  | - | - | - | 4 | 2 | 105 53 | - | 14 | 22 | 2 | 31 | 45 |  | 10 | 2 |
|  | - | 8 | - | 4 | - | 8 | - | 14 | 17 | - | 14 | 16 | - | 1 | 2 |
|  | - | 149 | - | 9 | 204 | 89 136 | N | 51 | 28 | 1 | 65 | 41 |  | 13 | 18 |
|  |  |  |  |  | 204 | 136 | N |  | 46 | 1 | 51 | 54 |  | 71 | 18 |
| E.S. CENTRAL Ky. <br> Tenn. <br> Ala. <br> Miss. | 2 | 3 | - | 24 | 9 | 153 |  |  |  |  |  |  |  |  |  |
|  | - | - | - | 1 | 1 | 30 | 1 | 59 21 | 67 22 | - | 34 | 52 | - | 19 | 49 |
|  | - | - | - | , | 6 | 52 | 1 | 21 32 | 22 | - | 14 | -6 |  | 18 | 31 |
|  | - | 1 | - | 4 | 2 | 49 | 1 | 32 | 25 | - | 9 | 26 |  | - | 2 |
|  | 2 | 2 | - | 19 | 2 | 49 22 | - | 2 | 10 | - | 5 | 5 |  | 1 | 2 |
|  |  |  | - | 1 | - | 22 | - | 4 | 10 | - | 6 | 15 |  | 1 | 16 |
| W.S. CENTRAL Ark. <br> La <br> Okla. <br> Tex. | - | 44 | - | 35 | 169 |  |  |  |  |  |  |  |  |  |  |
|  | - | 5 | - | 8 | 169 | 267 22 | 5 |  | 262 | 2 | 450 | 104 | - | 120 | 128 |
|  | - | 4 | - | 25 | 13 | 47 | - | 3 1 | 8 | 1 | 25 | 6 |  | - | 128 2 |
|  | - | 1 | - | 25 | 30 | 47 35 | N | 1 | 6 | 1 | 12 | 22 |  | 10 | 1 |
|  | - | 34 | - | 2 | 126 | 163 | N 5 | 215 | 248 | 1 | 330 | 7 | - | - | 3 |
|  |  |  |  |  |  |  | 5 | 215 | 248 | 1 | 83 | 69 |  | 110 | 122 |
| MOUNTAIN <br> Mont. <br> Idaho <br> Wyo. <br> Colo. <br> N. Mex. <br> Ariz. <br> Utah <br> Nev. | 3 | 15 | - | 18 | 29 |  | 1 |  |  |  |  |  |  |  |  |
|  | - | - | - | 4 | 2 | 30 | 1 | 178 | 117 | 2 | 223 | 70 | - | 39 | 95 |
|  | - | - | - | 10 | - | 30 9 | - | 7 8 | 7 | - | 2 | 1 | - | 6 | 6 |
|  | - | - | - |  | 1 | 9 2 | - | 8 4 | 4 | - | 15 | 12 | - | 8 | 7 |
|  | - | - | - | 3 | 8 | 37 | - | 4 53 | 2 | 1 | 6 | 4 | - | 8 | 8 |
|  | - | - | - | 3 | - | 37 7 | N | 53 | 20 | 1 | 134 | 20 | - | 1 | 8 |
|  | - | - | - | 1 | 17 | 23 | N 1 | 93 | 54 | - | 14 | 8 | - | - | 6 |
|  | 3 | 15 | - | 1 | 3 | 12 | 1 | 93 | 54 | - | 29 | 21 | - | 8 | 21 |
|  | - |  | - | - | 3 | 12 | - | 8 | 22 | - | 22 | 4 | - | 7 |  |
|  |  |  |  | - | - | 1 | - | 5 | 8 | 1 | 1 | - | - | 1 | 29 12 |
| PACIFIC <br> Wash. <br> Oreg. <br> Calif. <br> Alaska <br> Hawaii | - | 164 | 1 | 66 | 894 |  |  |  |  |  |  |  |  |  | 12 |
|  | - | 2 | . | 33 | r 42 | 333 48 | 8 | 433 | 610 | 3 | 150 | 203 | 5 |  |  |
|  | - | 8 | - | 2 | 42 17 | 48 59 | 1 $N$ | 53 | 102 | - | 20 | 33 | 5 | 315 9 | 1.487 58 |
|  | - | 153 | 1 § | 29 | 829 | 59 215 | N | 344 | - | - | 9 | 27 |  | 14 | 58 7 |
|  | - |  | 1 | 2 |  | 215 4 | 7 | 344 | 472 | 3 | 114 | 115 | 5 | 14 290 | 1.408 |
|  | - | 1 | - | - | 5 | 4 7 | - | 16 20 | 15 21 | , | 4 3 | - | 5 | 290 | 1,408 |
| Guam <br> P.R. <br> V.I. <br> Pac. Trust Terr. | U | 1 | U | 1 |  |  |  |  |  |  | 3 | 28 |  | 1 | 9 |
|  | - | 94 | U | 1 | 220 | 11 | U | $1{ }^{1}$ | 5 | U | - | - | U |  |  |
|  | U |  | U | 5 | 220 | 11 | 5 | 145 | 104 | U | 14 | 22 | U | 8 | 12 |
|  | U | - | U | 5 | 1 | - | U | - | 4 | U | 14 | 22 | U | 8 | 13 |
|  |  |  |  | - | 1 | - | U | - | 6 | U | - | - | U | 2 | 2 |

- For measles only, imported cases includes both out-of-state and international importations.

TABLE III. (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending December 17, 1983 and December 18, 1982 (50th week)

| Reporting Area | Syphilis (Civilian) (Primary \& Secondary) |  | Toxicshock Syndrome | Tuberculosis |  | Tularemia | Typhoid Fever | Typhus Fever (Tick-borne) (RMSF) | Rabies, Animal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1982 \end{aligned}$ | 1983 | 1983 | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$ |
| UNITED STATES | 30,946 | 31,798 | 9 | 605 | 22,739 | 303 | 433 | 1,129 | 5,634 |
| NEW ENGLAND | 661 | 593 | - | 20 | 689 | 4 | 18 | 6 | 37 |
| Maine | 19 | 8 | - | . | 36 | - |  | , | 9 |
| N.H. | 27 | 5 | - | - | 34 | - | - | 1 | 5 |
| Vt . | 3 | 4 | - | - | 12 | - | - | . | 2 |
| Mass. | 426 | 398 | . | 18 | 375 | 3 | 13 | 2 | 14 |
| R.I. | 22 | 27 | - |  | 58 | 1 | 1 | 2 | 1 |
| Conn. | 164 | 151 | - | 2 | 174 | - | 4 | 3 | 6 |
| MID ATLANTIC | 4,039 | 4.279 | 1 | 109 | 4.101 | 1 | 75 | 27 | 261 |
| Upstate N.Y. | 307 | 448 | - | 17 | 690 | 1 | 11 | 7 | 75 |
| N.Y. City | 2,378 | 2,527 | - | 57 | 1,640 | - | 27 | 2 | - |
| N.J. | 799 | 618 | 1 | 20 | 831 | - | 31 | 8 | 24 |
| Pa . | 555 | 686 | - | 15 | 940 | - | 6 | 10 | 162 |
| E.N. CENTRAL | 1,580 | 1,857 | - | 98 | 3,065 | 4 | 63 | 69 | 469 |
| Ohio | 441 | 318 | - | 16 | 488 | . | 19 | 27 | 60 |
| Ind. | 141 | 195 | - | 30 | 359 | - | 4 | 16 | 30 |
| III. | 669 | 969 | - | 30 | 1.304 | 1 | 28 | 17 | 239 |
| Mich. | 236 | 276 | - | 21 | 763 | 1 | 10 | 7 | 20 |
| Wis. | 93 | 99 | - | 1 | 151 | 2 | 2 | 2 | 120 |
| W.N. CENTRAL | 378 | 544 | 5 | 11 | 705 | 89 | 12 | 56 | 814 |
| Minn. | 144 | 142 | 2 | 4 | 153 | - | 2 | - | 143 |
| lowa | 22 | 34 | 1 | - | 65 | - | - | - | 199 |
| Mo. | 145 | 292 | - | 5 | 344 | 60 | 8 | 27 | 96 |
| N. Dak | 2 | 7 | - | 2 | 8 | - | - | 1 | 86 |
| S. Dak | 11 | 2 | - | - | 36 | 10 | - | 5 | 144 |
| Nebr. | 15 | 15 | 2 | - | 25 | 8 | - | 3 | 65 |
| Kans. | 39 | 52 | - | - | 74 | 11 | 2 | 20 | 81 |
| S. ATLANTIC | 8,488 | 8.683 | 1 | 138 | 4.580 | 12 | 54 | 471 | 2,035 |
| Del. | 43 | 25 | , | 2 | 63 | - | - | 4 | 5 |
| Md | 566 | 481 | - | 14 | 366 | 3 | 5 | 38 | 771 |
| D. C . | 374 | 469 | - | 9 | 189 | - | 3 |  | 141 |
| Va . | 545 | 598 | . | 3 | 488 | 1 | 17 | 60 | 609 |
| W. Va. | 24 | 30 | - | 5 | 132 | - | 2 | 12 | 114 |
| N.C. | 853 | 709 | - | 15 | 717 | 7 | 4 | 205 | 26 |
| S.C. | 560 | 554 | - | 18 | 440 | - | 2 | 80 | 36 |
| Ga . | 1.498 | 1,788 | - | 38 | 804 | 1 | 2 | 66 | 209 |
| Fla. | 4,025 | 4,029 | 1 | 34 | 1.381 | - | 19 | 6 | 124 |
| ES CENTRAL | 2.087 | 2,174 | - | 44 | 2,016 | 23 | 10 | 108 | 356 |
| Ky. | 171 | 127 | - | 7 | 507 | 1 | 3 | 24 | 83 |
| Tenn. | 574 | 619 | - | 17 | 615 | 17 | 2 | 49 | 188 |
| Ala. | 801 | 829 | - | 14 | 510 | - | 2 | 24 | 85 |
| Miss. | 541 | 599 | - | 6 | 384 | 5 | 3 | 11 |  |
| W.S. CENTRAL | 7.927 | 8,388 | 2 | 70 | 2.813 | 120 | 63 | 376 | 987 |
| Ark. | 187 | 217 |  | 8 | 346 | 70 | 4 | 42 | 158 |
| La. | 1,637 | 1,797 | - | 12 | 433 | 7 | 4 | 1 | 34 |
| Okla. | 194 | 181 | 2 | 12 | 266 | 32 | 2 | 233 | 102 |
| Tex. | 5.909 | 6,193 | - | 38 | 1,768 | 11 | 53 | 100 | 693 |
| MOUNTAIN | 631 | 809 | - | 7 | 603 | 41 | 23 | 14 | 231 |
| Mont. | 7 | 5 | - | - | 42 | 6 | 1 | 6 | 66 |
| Idaho | 7 | 25 | - | 2 | 29 | 2 | 1 | 3 | 16 |
| Wyo. | 12 | 16 | - |  | 11 | 8 |  | 2 | 12 |
| Colo. | 152 | 230 | - | - | 84 | 14 | 1 | - | 32 |
| N. Mex. | 169 | 186 | - | - | 108 | 3 | 2 | - | 15 |
| Ariz. | 162 | 215 | - | 4 | 253 | 1 | 16 | 1 | 36 |
| Utah | 22 | 23 | - | 1 | 37 | 6 | 1 | 1 | 11 |
| Nev . | 100 | 109 | - | - | 39 | 1 | 1 | 1 | 43 |
| PACIFIC | 5,155 | 4,471 | - | 108 | 4,167 | 9 | 115 | 2 | 444 |
| Wash. | 186 | 166 | - | 6 | 230 | 2 | 5 | - | 2 |
| Oreg. | 143 | 111 | - | 6 | 178 | 3 | 4 | - | 1 |
| Calif. | 4,735 | 4,072 | - | 92 | 3,455 | 3 | 103 | 2 | 426 |
| Alaska | 14 | 15 | - | - | 73 | 1 |  | - | 15 |
| Hawaii | 77 | 107 | - | 4 | 231 | - | 3 | - | - |
| Guam | - | 1 | U | U | 5 | - | - | - | 8 |
| P.R. | 879 | 784 | , | 8 | 455 | - | 1 | - | 48 |
| V.I. | 19 | 29 | U | U | 2 | - | 1 | - | - |
| Pac. Trust Terr. | - | - | $\cup$ | U | - | - | - | - | - |

TABLE IV. Deaths in 121 U.S. cities,* week ending
December 17, 1983 (50th week)

| Reporting Area | All Causes, By Age (Years) |  |  |  |  |  | P\&1-" <br> Total | Reporting Area | All Causes, By Age (Years) |  |  |  |  |  | $\begin{aligned} & \text { P\&1•• } \\ & \text { Total } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$ | $\geqslant 65$ | 45-64 | 25-44 | 1-24 | <1 |  |  | $\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$ | $\geqslant 65$ | 45-64 | 25-44 | 1-24 | $<1$ |  |
| NEW ENGLAND | 721 | 480 | 157 | 42 | 19 | 23 | 61 | S. ATLANTIC | 1,437 | 898 | 348 | 97 | 46 | 47 | 58 |
| Boston, Mass. | 171 | 104 | 39 | 13 | 6 | 9 | 18 | Atianta, Ga. | 136 | 88 | 33 | 8 | 2 | 5 | 1 |
| Bridgeport, Conn. | 50 | 32 | 10 | 5 | 3 | - | 7 | Baltimore, Md. | 476 | 289 | 117 | 33 | 23 | 14 | 14 |
| Cambridge, Mass. | 27 | 17 | 7 | 1 | - | 2 | 3 | Charlotte, N.C. | 80 | 50 | 23 | 5 | 2 | 1 | 2 |
| Fall River, Mass. | 39 | 33 | 5 | 1 | - |  | - | Jacksonville, Fla. | 118 | 73 | 26 | 6 | 6 | 7 | 7 |
| Hartford, Conn. | 61 | 42 | 13 | 3 | 1 | 2 | 4 | Miami, Fla. | 86 | 42 | 31 | 9 | 1 | 3 | 1 |
| Lowell, Mass | 29 | 20 | 7 | 2 | - | - | - | Norfolk, Va. | 51 | 34 | 9 | 3 | - | 5 | 4 |
| Lynn, Mass. | 18 | 13 | 5 | - | - |  | 1 | Richmond, Va. | 82 | 41 | 21 | 14 | 3 | 2 | 8 |
| New Bedford, Mass | s. 35 | 27 | 2 | 3 | - | 3 | - | Savannah, Ga. | 49 | 29 | 11 | 6 | 1 | 2 | 6 |
| New Haven, Conn. | 62 | 34 | 19 | 6 | 1 | 2 | 3 | St. Petersburg, Fla. | 137 | 115 | 19 |  | 1 | 2 | 8 |
| Providence, R.I. | 69 | 45 | 20 | - | 1 | 3 | 6 | Tampa, Fla. | 68 | 41 | 21 | - | 2 | 4 | 5 |
| Somerville, Mass. | 10 | 7 | 2 | 1 | - | - | 2 | Washington, D.C. | 83 | 51 | 21 | 8 | 2 | 1 | 5 |
| Springfield, Mass. | 45 | 32 | 9 | 2 | 1 | 1 | 1 | Wilmington, Del. | 71 | 45 | 16 | 5 | 3 | 2 | 2 |
| Waterbury, Conn. | 29 | 23 | 3 | 1 | 1 | 1 | 7 | Wilmington, Del. |  |  |  |  |  | 2 |  |
| Worcester, Mass | 76 | 51 | 16 | 4 | 5 | - | 9 | E.S CENTRAL | 688 | 447 | 158 | 45 | 28 | 10 | 47 |
|  |  |  |  |  |  |  |  | Birmingham, Ala | $121$ | 82 | 24 | 9 | 3 | 3 | 2 |
| MID ATLANTIC 2 | 2,680 | 1,755 35 | 604 | 190 | 71 | 60 | 129 | Chattanooga, Tenn. | 60 | 42 | 8 8 | 6 | 1 | 3 | 5 |
| Albany, N.Y. | 55 | 35 | 10 | 5 | 1 | 4 | 2 | Knoxville, Tenn. | 61 | 42 | 15 | 2 | 2 | - | 5 |
| Allentown, Pa. | 18 | 13 103 | 3 | 0 | 2 | - | - | Louisville, Ky. | 132 | 80 | 32 | 9 | 9 | 2 | 15 |
| Buffalo, N.Y. | 150 34 | 103 | 34 | 10 | 1 | 2 | 13 | Memphis, Tenn. | 95 | 66 | 25 | 2 | 2 | . | 13 |
| Camden, N.J. | 34 | 20 | 10 | 2 | - | 2 | 2 | Mobile, Ala. | 49 | 34 | 10 | 2 | 3 | - | 1 |
| Elizabeth, N.J. | 29 | 19 | 9 | 3 | - | 1 | 1 | Montgomery, Ala. | 53 | 38 | 7 | 6 | 2 | - | 2 |
| Erie, Pat | 47 | 34 | 9 | 3 | 1 | - | 6 | Nashville, Tenn. | 117 | 63 | 37 | 9 | 6 | 2 | 4 |
| Jersey City, N.J. | 44 | 32 | 5 | 4 | 1 | 2 | - |  |  |  |  |  |  | 2 | 4 |
| N. Y. City, NY 1 | 1,444 | 931 | 328 | 114 | 42 | 29 | 52 | W. S CENTRAL | 1.391 | 841 | 345 | 102 | 48 | 55 | 49 |
| Newark, N.J. | 108 | 55 | 31 | 10 | 7 | 5 | 5 | Austin, Tex. | 57 | 39 | 12 | 5 | 8 | 1 | 2 |
| Paterson, N.J. | 28 | 19 | 2 | 5 | 2 | - | 1 | Baton Rouge, La. | 43 | 26 | 9 | 3 | 3 | 2 | 2 |
| Philadelphia, Pa.t | 307 | 188 | 77 | 24 | 10 | 8 | 15 | Corpus Christi, Tex | 43 | 29 | 11 | - | 2 | 1 | 1 |
| Pittsburgh, Pa.t | 48 | 31 | 13 | 2 | - | 2 | 3 | Dallas, Tex. | 159 | 89 | 43 | 15 | 9 | 3 | 2 |
| Reading, Pa . | 28 | 24 | 3 | 1 | - | - | - | El Paso, Tex. | 58 | 37 | 14 | 5 | 2 | - | 7 |
| Rochester, N.Y. | 130 | 97 | 25 | 2 | 1 | 5 | 11 | Fort Worth, Tex | 121 | 67 | 29 | 5 | 4 | 16 | 2 |
| Schenectady, N.Y. | 28 | 23 | 4 | 1 | - | . | 2 | Houston. Tex. | 360 | 189 | 108 | 32 | 17 | 14 | 7 |
| Scranton, Pa.t | 25 | 22 | 3 | - | - | - | 1 | Little Rock, Ark. | 68 | 38 | 21 | 7 | - | 2 | 4 |
| Syracuse, N. Y. | 79 | 52 | 23 | 3 | 1 | - | 6 | New Orleans, La | 127 | 82 | 27 | 7 | 4 | 7 | 4 |
| Trenton, N J. | 35 | 24 | 10 | - | 1 | - | 5 | San Antonio. Tex | 184 | 119 | 40 | 15 | 6 | 4 | 13 |
| Utica, N.Y. | 17 | 15 | 5 | 2 | 1 | - | 1 | Shreveport, La | 66 | 41 | 19 | 4 | 1 | 1 | 2 |
| Yonkers, N. Y . | 26 | 18 | 5 | 2 | 1 | - | 3 | Tulsa, Okla. | 105 | 85 | 12 | 4 | 1 | 4 | 7 |
| E.N.CENTRAL 2 | 2,332 | 1,499 | 573 | 149 | 54 | 57 | 87 | MOUNTAIN | 663 | 419 | 150 | 42 | 26 | 25 | 34 |
| Akron, Ohio | 45 | 29 | 14 | 1 | 1 | . | 8 | Albuquerque, N.Mex | - 81 | 46 | 14 | 13 | 26 4 | 25 4 | 34 2 |
| Canton, Ohio | 36 | 27 | 6 | 1 | 2 | $10^{-}$ | - | Colo. Springs, Colo. | 46 | 25 | 13 | 4 | 3 | 1 | 6 |
| Chicago, III | 588 | 357 | 151 | 45 | 19 | 16 | 10 | Denver, Colo. | 118 | 80 | 26 | 4 | 3 | 5 | 5 |
| Cincinnati, Ohio | 130 | 92 | 26 | 4 | 3 | 5 | 14 | Las Vegas, Nev | 86 | 52 | 25 | 7 | 2 | 5 | 7 |
| Cleveland, Ohio | 191 | 113 | 56 | 11 | 3 | 8 | 4 | Ogden, Utah | 24 | 17 | 4 | - | 1 | 1 | 3 |
| Columbus, Ohio | 135 | 84 | 35 | 8 | 4 | 4 | 3 | Phoenix, Ariz. | 153 | 97 | 34 | 5 | 10 | 7 | 1 |
| Dayton, Ohio | 99 | 71 | 21 | 4 | - | 3 | 7 | Pueblo, Colo | 17 | 13 | 4 | 5 | 10 | 7 | 1 |
| Detroit, Mich. | 288 | 169 | 78 | 31 | 8 | 2 | 5 | Salt Lake City, Utah | 42 | 22 | 11 | 2 | 1 | 6 | - |
| Evansville, Ind. | 55 | 44 | 9 | 1 |  | 1 | 3 | Tucson, Ariz. | 96 | 67 | 19 | 7 | 2 | 1 | 10 |
| Fort Wayne, Ind. | 55 | 35 | 16 | 3 | - | 1 | 2 |  |  |  |  |  |  |  | 10 |
| Gary, Ind. | 20 | 8 | 6 | 3 | 2 | 1 | - | PACIFIC | 2,232 | 1.511 | 451 | 145 | 62 | 61 | 124 |
| Grand Rapids, Mich. | h. 50 | 32 | 13 | 3 | 2 | 2 | 3 | Berkeley, Calif. | 2,232 | 15 | 5 | 14 | 62 | 61 | 124 |
| Indianapolis, Ind | 169 | 107 | 46 | 10 | 2 | 4 | 3 | Fresno, Calif | 91 | 70 | 12 | 3 | 2 | 4 | 5 |
| Madison, Wis. Milwaukee, Wis. | 34 134 | 18 | 8 | 4 | 2 | 2 | 5 | Glendale, Calif. | 58 | 42 | 13 | 1 | - | 2 | 4 |
| Milwaukee, Wis. Peoria, lill | 134 | 99 | 26 | 3 | 3 | 3 | 7 | Honolulu, Hawaii | 63 | 35 | 17 | 5 | 4 | 2 | 7 |
| Peoria, lil | 39 | 22 | 13 | 2 | 1 | 1 | 5 | Long Beach, Calif | 105 | 67 | 30 | 5 | 2 | 1 | 5 |
| Rockford, ili. | 33 | 24 | 8 | 1 | 1 | 2 | 4 | L.os Angeles, Calif. | 905 | 630 | 161 | 73 | 23 | 17 | 37 |
| South Bend, Ind. | 66 112 | 50 | 12 | 1 | 1 | 2 | 5 | Oakland, Calif. | 49 | 29 | 11 | 6 | 1 | 2 | 2 |
| Toledo, Ohio | 112 | 78 | 20 | 10 | 3 | 1 | 7 | Pasadena, Calif. § | 32 | 30 | - | 1 | - | 1 | 1 |
| Youngstown, Ohio | 53 | 40 | 9 | 3 | - | 1 | - | Portland, Oreg. | 103 | 74 | 20 | 4 | 3 | 1 | 4 |
| W.N. CENTRAL |  |  |  |  |  |  |  | Sacramento, Calif. | 82 134 | 44 | 23 | 8 | 3 | 4 | 9 |
| Des Moines, lowa | 61 | 499 | 127 | 33 | 16 | 34 | 35 | San Diego, Calif. | 134 | 79 | 32 | 11 | 9 | 3 | 15 |
| Culuth, Minn | 21 | 15 | 4 | 3 | 2 | 2 | 2 3 | San Francisco, Calif San Jose, Calif. | 138 153 | 100 94 | 31 40 | 5 | 1 | 1 | 8 |
| Kansas City, Kans. | 19 | 7 | 5 | 3 | 1 | 3 | 1 | Seattle, Wash. | 169 | 94 119 | 47 27 | 9 | 4 | 9 | 16 |
| Kansas City, Mo. | 130 | 91 | 20 | 7 | 5 | 5 | 1 | Spokane, Wash. | 54 | 41 | 9 | 2 | 7 | 2 | 5 |
| Lincoin, Nebr. | 26 | 19 | 6 | 1 | - | - | 2 | Tacoma, Wash. | 76 | 42 | 20 | 6 | 3 | 5 | 3 |
| Minneapolis, Minn. | . 104 | 75 | 15 | 5 | 3 | 6 | 5 |  | +t |  | 2 |  |  |  | 3 |
| Omaha, Nebr. St. Louis, Mo. | 93 160 | 65 110 | 22 | 4 | 1 | 1 12 | r 6 | TOTAL | 12,855 | 8.349 | 2,913 | 845 | 370 | 372 | 624 |
| St. Louis, Mo. St. Paul, Minn. | 160 59 | 110 47 | 28 10 | 6 2 | 4 |  | 13 1 |  |  |  |  |  |  |  |  |
| Wichita, Kans. | 38 | 24 | 7 | 2 |  | 5 | 2 |  |  |  |  |  |  |  |  |

[^2]§ Data not available. Figures are estimates based on average of past 4 weeks.

Hepatitis A - Continued
1982, less than 7\% of hepatitis cases reported to the Viral Hepatitis Surveillance Program were associated with food-borne or waterborne outbreaks (1).

Despite substantial numbers of hepatitis $A$ infections reported each year among foodhandlers, only a few food-borne outbreaks result from such infections. In 1982, 691 infected foodhandlers were reported to CDC, but only eight food-borne or waterborne epidemics were reported (1). This suggests that contamination of food by infected foodhandlers is uncommon. Since cooking inactivates the virus, food-borne outbreaks of hepatitis A almost always involve only foods that remain uncooked between contamination and consumption. Most authorities accept handwashing as the single, most important environmental barrier preventing transfer of virus from feces to food. As demonstrated in the first outbreak, the presence of diarrhea in the index patient may increase risk of disease transmission in spite of a history of good handwashing.

Since the 1940s, immune globulin (IG) has been used successfully in the prophylaxis of hepatitis A if given within 2 weeks of exposure (2). In established food-borne outbreaks, which are usually recognized about 4 weeks (one incubation period) after exposure has occurred, IG is generally not useful in preventing illness.

Health departments are often asked to evaluate situations in which a lone foodhandler at a restaurant has contracted hepatitis $A$. If the diagnosis has been confirmed by a positive serum anti-HAV IgM, IG should be administered to all other foodhandlers at the restaurant. Because of the low risk of hepatitis transmission by a foodhandler, only rarely is IG prophylaxis recommended for patrons of the restaurant. CDC has recommended that such a program not be undertaken unless the following conditions exist: (1) the foodhandler has a positive anti-HAV $\operatorname{lgM}$; (2) the foodhandler handles, without gloves, cold foods that will not be cooked before consumption; (3) the foodhandler has inadequate personal hygiene, especially failure to wash hands after defecation; (4) the patrons have had repeated exposures to these foods; (5) IG can be administered within 2 weeks of the last possible exposure (3).
References

1. CDC. Unpublished data.
2. Seeff LB, Hoofnagle JH. Immunoprophylaxis of viral hepatitis. Gastroenterology 1979;77:161-82.
3. CDC. Hepatitis Surveillance Report No. 45. May 1980.

## Interstate Transmission of Measles in a Gypsy Population Washington, Idaho, Montana, California

A measles outbreak among 44 persons, with rash onsets ranging from September 4, through November 14, 1983, was reported from Washington, Idaho, Montana, and California (Figure 5). The source was a measles outbreak in Chicago, lllinois. Seven (16\%) patients were hospitalized during the outbreak (Table 2), three of whom were hospitalized with dehydration, two with severe vomiting and diarrhea, one with otitis media, and one with bronchitis. No deaths were reported. Of the 44 patients, 27 ( $61 \%$ ) were children of people who call themselves Gypsies.

The outbreak began with a 2-year-old Gypsy boy who lived in a neighborhood in Chicago where an outbreak of measles occurred. He had onset of rash on September 4 in Billings, Montana, where he infected a 13 -year-old Gypsy boy who subsequently had rash onset September 19 while attending a wedding in Spokane, Washington. The wedding, which was

Measles - Continued
held in a banquet room at a race track, was attended by approximately 375 people from Gypsy communities in Idaho, Montana, Oregon, and Washington. Approximately 75 of the attendees were children. Of these, 17 were infected by the 13 -year-old boy, for an attack rate of $23 \%$. None of the 17 children had adequate evidence of immunity to measles.* The resulting outbreak involved persons living in four states.

Washington: Twenty-eight cases were reported in four spread generations of infection. All 13 cases in the first two generations occurred among the Gypsy population. Three addi-
*Written documentation showing date of administration of live measles vaccine on or after the first birthday, or documented history of physician-diagnosed measles illness.

TABLE 2. Age distribution and hospitalization of 44 measles patients - Washington, Idaho, Montana, California, September 4-November 14, 1983

|  | Measles patients |  | Hospitalized |  |
| :---: | ---: | :---: | :---: | :---: |
| Age | No. | \% of total | No. | \% of total |
| $<5$ | 19 | 43.2 | 5 | 11.4 |
| $5-9$ | 11 | 25.0 | 1 | 2.3 |
| $10-14$ | 5 | 11.4 | 1 | 2.3 |
| $15-19$ | 3 | 6.8 | 0 | 0.0 |
| $\geqslant 20$ | 6 | 13.6 | 0 | 0.0 |
|  |  | 100.0 | 7 | 15.9 |

FIGURE 5. Reported measles cases, by date of rash onset - Washington, Idaho, Montana, California, September 4-November 14, 1983


## Measles - Continued

tional generations occurred, involving other persons in their communities. Transmission probably occurred at the race track, in patients' homes, and in school.

Twenty-one ( $75 \%$ ) of the 28 patients lacked adequate evidence of immunity to measles. Of these, 15 were Gypsies, four were children of chiropractors who refused permission for vaccination, and two were either too young or too old to attend school, and therefore, were not affected by the school immunization law. The four children of chiropractors had been allowed to attend school on the basis of personal exemptions. In addition, three patients were infected in medical settings - an 8-year-old child, who was infected by another patient while visiting a private physician, and a 32-year-old ward clerk and a 27 -year-old emergency-room nurse who were infected when exposed to four children with measles. The nurse was probably infectious while she attended a national conference for approximately 800 emergencyroom nurses in Anaheim, California. Following this incident, immunization program staff contacted these nurses in their 46 states of residence, but no additional cases were identified.

Idaho: Nine cases occurred among unimmunized individuals. Four of the patients attended the wedding in Spokane with the 13-year-old Gypsy boy. In addition, a 38-year-old man who did not attend the wedding was probably infected by the same boy. No additional cases occurred after October 10.

Montana: Three patients were infected by the 13 -year-old boy at the wedding. No additional cases were reported after October 7.

California: A $21 / 2$-year-old unvaccinated child from a migrant family in Santa Clara had rash onset November 12. She was infected by her 18 -month-old sister, who acquired measles in Washington from children of one of the affected Gypsy families.
Reported by LG Dales, MD, J Chin, MD, State Epidemiologist, California Dept of Health Svcs; D Adams, District III Health Dept, Canyon County, G Hurst, District V Health Dept, Twin Falls County, J Jelke, District VI Health Dept, Bannock County, B Arnell, District VII Health Dept, Bonneville County, F Dixon, MD, CD Brokopp, DrPH, State Epidemiologist, Idaho Dept of Health and Welfare; Immunization Program, KT Reddi, MD, Chicago Dept of Health, BJ Francis, MD, State Epidemiologist, Illinois Dept of Public Health; BL Desonia, SC Linder, JK Gedrose, State Epidemiologist, Montana Dept of Health and Environmental Sciences; MO Luther, MD, BA Feyh, MS, S Thompson, Spokane County Health District, BJ Baker, DA Johnson, VJ Ross, RH Leahy, MD, Chief, Office of Preventive Health Svcs, JM Kobayashi, MD, State Epidemiologist, Washington State Dept of Social and Health Svcs; Div of Immunization, Center for Prevention Svcs, CDC.
Editorial Note: This outbreak primarily involved a highly mobile group of Gypsies and demonstrates that clusters of susceptibles can sustain measles transmission. Similar interstate measles outbreaks in other highly mobile groups have been reported in recent months $(1,2)$. Outbreaks have also been reported among children where parents oppose immunization on religious or philosophical grounds (3). The failure of measles to spread extensively in the community in each outbreak suggests that immunization levels in the general population are high.

It is believed that approximately 500,000 Gypsies currently reside in the United States (4). Even though most Gypsies do not object to immunization, none of the Gypsy patients in this outbreak had been vaccinated against measles. Folk medicine is often preferred over established medical practices; Gypsies generally avoid established medical care except when very ill $(5,6)$. Moreover, many Gypsy children do not attend school, and therefore, are not affected by school immunization laws.

Since such populations are difficult to reach in vaccination programs and since measles is continually imported into the United States in low numbers, the potential exists for occasional small outbreaks, as reported here. Communities can best protect themselves by ensuring that high immunization levels are achieved and maintained. The kind and quality of surveillance

Measles - Continued
and epidemiologic follow-up demonstrated by this outbreak were made possible by rapid, effective communication between the 46 states involved in the active surveillance and tracing of contacts of patients. Highly motivated and responsive staff again played a significant role in the delineation and containment of this outbreak and the maintenance of high immunization levels.

## References

1. CDC. Measles among members of a drum and bugle corps - Arkansas, California, Kansas. MMWR 1983;32:561-2, 567.
2. CDC. Transmission of measles across state lines-Kentucky, New Hampshire, Tennessee, Virginia. MMWR 1982;31:123-6.
3. CDC. Measles among children with religious exemptions to vaccination-Massachusetts, Ohio. MMWR 1981;30:550, 555-6.
4. Wetzel RC, Dean JM, Rogers MC. The art of pediatrics: Gypsies and acute medical intervention. Pediatrics 1983;72:731-5.
5. Mandell F. Gypsies: culture and child care. Pediatrics 1974;54:603-7.
6. Anderson G, Tighe B. Gypsy culture and health care. Am J Nurs 1973;73:282-5.

## Outbreak of Diarrheal IIIness Associated with a Natural Disaster - Utah

On August 8, 1983, the Utah Department of Health was notified by the Tooele County Health Department (TCHD) of an outbreak of diarrheal illness in Tooele, Utah, possibly associated with a contaminated public water supply that resulted from flooding during Utah's spring thaw. By September 30, 1983, 1,272 individuals were identified who met the following case definition: diarrhea lasting more than 5 days or recurrent diarrhea and two or more of the following symptoms: abdominal pain or cramping, bloating, nausea, weight loss, vomiting, or fever over $37.8 \mathrm{C}(100 \mathrm{~F})$. A total of 1,230 of the patients resided in Tooele ( $9.8 \%$ of the population of 12,500 ); the remaining 42 patients resided elsewhere but had visited or worked in Tooele.

Cases were identified from two sources: 1,104 came from Tooele physicians' daily rosters, and 168 responded to announcements by the local news media. Individuals were contacted by telephone and asked standardized questions.

For comparison, individuals living in a city of similar size and sociodemographics 65 miles distant and with its own municipal water system were selected randomly and asked the same questions as the patients. Three ( $2.9 \%$ ) of 103 comparison individuals interviewed met the case definition. The difference between the prevalence of diarrheal illness in Tooele and that in the comparison city was statistically significant ( $p<0.02$ ). Statistical comparison of the patients from Tooele and the individuals from the comparison town failed to incriminate exposure to mountain stream water (a common source of giardiasis in Utah), pet ownership, food, day-care centers, or anal intercourse - all recognized modes of giardiasis exposure.

The age and sex distributions of patients were similar to those of the general population served by the water district. Besides diarrhea, the most common symptoms were abdominal pain or cramping ( $88 \%$ ) and bloating ( $77 \%$ ). Sixty-seven percent complained of nausea; 32\%, of vomiting; and $17 \%$, of fever over 37.8C (100 F). Of 410 individuals submitting stool specimens for bacterial and parasitic examination, 105 (26\%) had Giardia lamblia. No other pathogenic parasites were observed, and no Salmonella, Shigella, Yersinia, or Campylobacter were isolated. Approximately 90\% of the 1,100 persons receiving medication were treated

Diarrheal IIIness - Continued
with metronidazole (Flagyl*); the remainder were treated with quinacrine (Atabrine") or furazolidone (Furoxone") or were given symptomatic medications.

Because of complaints about muddy water, the municipal water system in Tooele was inspected during the last week in July, and a pipe damaged by flooding, probably during the week of July 17 when Tooele experienced several days of heavy rain, was identified. During this week, three of five routine bacteriologic samples from this source had unsatisfactory coliform counts. Diarrheal illness peaked on August 1, approximately 2 weeks after the heavy rains and the abnormal coliform counts (Figure 6). The incubation period of waterborne giardiasis has been estimated as 7-14 days (1). On August 1, in response to complaints of murky tap water, the implicated water source was disconnected from the public water system. Ten days later, the system was hyperchlorinated to inactivate G. lamblia cysts.

The number of new cases declined steadily throughout August, and continuing surveillance indicates that no new cases have been epidemiologically linked to the public water system. A detailed cost analysis estimated the direct costs of the giardiasis cases at over \$116,000.
Reported by DM Perrotta, PhD, CR Nichols, MPA, AP Nelson, MPH, L Scanlon, G Smith, RE Johns, Jr, MD, State Epidemiologist, Utah Dept of Health, D Forster-Burke, M Bateman, G Dalton, MS, Tooele County Health Dept, Utah; Protozoal Diseases Br, Div of Parasitic Diseases, Center for Infectious Diseases, CDC.
Editorial Note: Flooding associated with abnormal weather patterns last year caused extensive damage in many areas in the United States, including Utah. This report illustrates a less obvious consequence of such natural disasters. A similar period of heavy water run-off associated with unseasonably warm weather and ash fall from the Mount St. Helens volcano eruption in 1980 was also linked to an outbreak of diarrhea due to G. lamblia (2).

[^3]FIGURE 6. Distribution of cases of diarmeal illness associated with a contaminated municipal water supply, by date of onset - Utah, 1983


## Diarrheal IIIness - Continued

It is unclear that this present outbreak of diarrheal illness was due solely to giardiasis, although this parasite was the only pathogenic agent identified. Because normal chlorine levels were temporarily unable to control bacterial contamination, some of the diarrhea cases may have been caused by unidentified bacteria or viruses.

Quinacrine (Atabrine) is the drug of choice for adults with giardiasis (3). Although individuals who receive quinacrine often complain of its bitter taste, the drug has not been associated with long-term adverse effects, as has metronidazole. The efficacy of quinacrine is thought to be better than that of metronidazole, and quinacrine costs considerably less (4).

## References

1. CDC. Unpublished data.
2. Weniger BG, Blaser MJ, Gedrose J, Lippy EC, Juranek DD. An outbreak of waterborne giardiasis associated with heavy water runoff due to warm weather and volcanic ashfall. Am J Public Health 1983;73:868-72.
3. The Medical Letter. Drugs for parasitic diseases. 1982;24:5-12.
4. Wolfe MS. Giardiasis. New Engl J Med 1978;298:319-21.


The Morbidity and Mortality Weekly Report is prepared by the Centers for Disease Control, Atlanta, Georgia, and available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, (202) 783-3238.

The data in this report are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Such reports and any other matters pertaining to editorial or other textual considerations should be addressed to: ATTN: Editor, Morbidit y and Mortality Weekly Report, Centers for Disease Control, Atlanta, Georgia 30333.

Director, Centers for Disease Control James O. Mason, M.D., Dr.P.H.
Director, Epidemiology Program Office
Carl W. Tyler, Jr., M.D.

## Editor

Michael B. Gregg, M.D. Mathematical Statistician Keewhan Choi, Ph.D.

מU.S. Government Printing Office: 1984-746-149/2012B Region IV

## DEPARTMENT OF HEALTH \& HUMAN SERVICES <br> Public Health Service <br> Centers for Disease Control <br> Atlanta GA 30333

## Official Business

Penalty for Private Use $\$ 300$


Postage and Fees Paid U.S. Dept. of H.H.S.

S 6HCA 5 MILM71 8334
MRS MARY ALICE MILLS DIRECTOR, IIBRARY BLDG 1-4007


[^0]:    *International Classification of Diseases, 8th Revision, Codes 8-rubric 303.9 and 8-rubric E860.

[^1]:    *For measles only, imported cases includes both out-of-state and international importations.

[^2]:    - Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100.000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed Fetal deaths are not included.
    - Pneumonia and influenza
    t Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
    t† Total includes unknown ages.

[^3]:    *Use of trade names is for identification only and does not imply endorsement by the Public Health Service or the U.S. Department of Health and Human Services.

